Reg. No.:					AACH	KP
-----------	--	--	--	--	------	----

Question Paper Code: 42450

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

Fifth Semester

Electronics and Communication Engineering EC 2302 – DIGITAL SIGNAL PROCESSING

(Regulations 2008)

(Common to PTEC 2302 – Digital Signal Processing for B.E. (Part-Time)
Fourth Semester – Electronics and Communication Engineering – Regulations 2009)

Time: Three Hours

Maximum: 100 Marks

Codes /Tables/Charts to be permitted, if any, may be indicated.

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. State the periodicity property of DFT.
- 2. What is twiddle factor?
- 3. Compare IIR and FIR filters.
- 4. State the significance of Impulse Invariant Method.
- 5. List any two advantages of FIR filter.
- 6. Write the frequency response equation of hanning window.
- 7. Distinguish between fixed point and floating point arithmetic.
- 8. List any two finite word length effect in digital filters.
- 9. Differentiate between Decimation and Interpolation.
- 10. What is polyphase decomposition?

PART - B

 $(5\times16=80 \text{ Marks})$

11. a) Compare linear convolution of the following two sequences using DFT. $x(n) = \{1, 2\}$ and $h(n) = \{2, 1\}$.

(OR)

b) Compute 8-point DFT of the discrete time signal, $x(n) = \{2, 1, 2, 1, 1, 2, 1, 2\}$ using Radix-2 DIT FFT.

12. a) Design a butterworth digital IIR lowpass filter using bilinear transformation by taking T = 0.5s, to satisfy the following specifications.

$$\begin{split} 0.707 \leq \left| H\!\left(e^{j\omega}\right) \right| \leq 1.0 \;\; ; \quad & \text{for } 0 \leq \omega \leq 0.45\pi \\ \left| H\!\left(e^{j\omega}\right) \right| \leq 0.2 \;\; ; \quad & \text{for } 0.65\pi \leq \omega \leq \pi \end{split}$$

Draw direct form-I structure of the filter.

(OR)

b) Obtain the cascade form realization of the LTI system governed by the equation

$$y(n) = -\frac{3}{8}y(n-1) + \frac{3}{32}y(n-2) + \frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2)$$

13. a) Design a linear phase FIR high pass filter using hamming window, with a cutoff frequency, $\omega_c = 0.8 \pi$ rad/sample and N = 7.

(OR)

- b) i) Explain the procedure for designing a FIR filter by Frequency Sampling technique.

 (6)
 - ii) Describe about linear phase realization of FIR filters. (10)
- 14. a) Find the quantization step size, variance of the error signal and variance of the quantization noise at the output for the given LTI system. The input signal x(n) has a range of -5V to +5V, represented by 8-bits. y(n) = 0.68y (n-1) + 0.15x(n).

(OR)

b) For second-order IIR Filter, $H(z) = \frac{1}{\left(1 - 0.5z^{-1}\right)\left(1 - 0.45z^{-1}\right)}$. Analyze the effect

of shift in pole location with 3-bit co-efficient representation in the direct and cascade form.

- 15. a) i) List the applications and advantages of multirate DSP. (6)
 - ii) Explain the concept of sampling rate conversion and its multistage implementation. (10)

(OR)

b) Determine the upsampled version of the signal $x(n) = \{1, -1, 2, -2\}$, by taking I = 2; 3 as the sampling rate multiplication factor.